Update of the frictional cooling

studies

at Nevis Labs/Columbia University

Raphael Galea Columbia University

for the Nevis group: A Caldwell, S Schlenstedt (DESY/Zeuthen) and H Abramowicz (TAU) and the Columbia summer students C Georgiou, D Greenwald, Y Ning, W Serber, I Spiro

- Frictional cooling
- Simulation and optimization
 - Target and magnet
 - Phase rotation
 - Cooling
- The experimental set-up

eidea	cool μ 's where $rac{\mathrm{dE}}{\mathrm{dx}}\proptoeta$	an E-field: cooling Below the ionization peak dE/dx is dominated by	 nuclear recoil 	 excitation 	• charge exchange (muonium) for μ^+ and capture for μ^-	Issues/ consequences/ comments:	 large dE/dx ⇒ work with a gas with E B we never get below the peak ⇒ apply E ⊥ B 	work with very low energy muons in Helium at low density
Frictional cooling: 1	Helium	10 ³ Slow down Effective dE/dx from E field				Nominal Scheme		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

⇒ need low initial muon momenta

Target system: transverse target

• cool μ^+ and μ^- in the same time

- exploit the non-leading behaviour of the low energy π
- calculated a new, symmetric magnet with a gap

further GEANT investigation of best configuration Cu, $E_p = 2$ GeV, target 0.5 or 0.75 cm thick

IIT/FNAL

Target (transverse): GEANI

Phase rotation: scheme

Phase rotation: results

- Electronic energy loss continuous (NIST table)
- Nuclear energy loss (multiple scattering) discrete
- $\circ~$ Include Barkas effect and μ^- capture
- Incorporate scattering cross section into the cooling program: $T_{\mu} > 2$ keV Born approx, else classical $\theta(b)$ $\rightarrow d\sigma/d\theta \rightarrow$ mean free path

Frictional cooling: particle trajectory

Frictional cooling: what did we achieve

First and preliminar	y result (based on $pprox$ 80 μ 's with p $_{x,y,z}$	$_{z} < 50 {\rm MeV}$)
----------------------	---	--------------------------

	μ^+		μ^-	
After	cooling	drift	cooling	drift
μ /proton	0.005	0.057†	0.004	0.058†
$rms(p_x)$ (MeV)	0.07	9.4	0.17	7.7
$rms(p_y)$ (MeV)	0.08	10.3	0.23	9.9
$rms(p_z)$ (MeV)	0.07	53	0.10	64
rms(tran) (cm ²)	40×60	25	40×60	25
rms(long) (cm)	250	1200	190	930
phase space reduction*	6 10 ⁵		6 10 ⁴	

† for $T_z < 100 \text{ MeV}$

 \ast phase space factor for the μ 's which are cooled

We continue to work on:

finalizing MARS and GEANT studies

the phase rotation optimization

incorporate fringe fields into cooling

matching B-fields between target (drift) region, phase rotation and cooling ring

extraction of μ from the cooling ring, and first re-acceleration

Frictional cooling: what did we achieve

First and preliminary RING result

(based on $pprox$ 10000 μ 's with 40 $< T_{arrival} <$ 200 ns)						
	$\mu^+ (t_2 = 225 \text{ns})$		$\mu^{-}(t_{2} =$	275ns)		
After	cooling	drift	cooling	drift		
μ /proton	0.008	0.057†	0.005	0.058†		
$rms(p_x)$ (MeV)	0.07	16	0.10	14		
$rms(p_y)$ (MeV)	0.07	16	0.10	15		
$rms(p_z)$ (MeV)	0.09	37	0.13	32		
rms(tran) (cm ²)	60×50	50	60×50	50		
rms(long) (cm)	121	387	276	387		
phase space reduction*	$1.4 imes 10^{6}$		1.3×10^{5}			

 \dagger for T_z < 100 MeV

* phase space factor for the μ 's which are cooled

We continue to work on:

finalizing MARS and GEANT studies

the phase rotation optimization

incorporate fringe fields into cooling

matching B-fields between target (drift) region, phase rotation and cooling ring

extraction of μ from the cooling ring, and first re-acceleration

Gas Breakdown

Can we apply high E-fields in gas without causing avalanche?

- High Magnetic field will help
- An Electron starting from rest in crossed E & B fields: Max. Kinetic Energy=2m(e/B)²
 For E = 5 MV/m, B = 5 T (KE)_{max} = 16 eV
- A muon from rest in crossed E & B fields: For E = 5 MV/m, B = 5 T (KE)_{max} = 3.3 keV

 $E_{ion}(H_2) = 13.6 \text{ eV}, E_{ion}(He) = 24.6 \text{ eV}$

Experimental Work at Nevis

 We want to measure the energy loss, the m⁻ s_{capture}, test cooling principle

Feb. 5, 2002

R. Galea IIT/FNAL

MultiWire Proportional Chamber

Single Wire prototype constructed, tested with P10
Ongoing: Multiwire, use Xe gas.

Feb. 5, 2002

R. Galea IIT/FNAL

MicroChannelPlate

- MCP used to measure ms & e
- Use a,b,g sources in 4 MeV p beam at Nevis & 10-40 KeV m beam at PSI

MCP: front

side

Accelerating grid