Update of the frictional cooling studies at Nevis Labs/Columbia University

Raphael Galea
Columbia University

for the Nevis group:
A Caldwell, S Schlenstedt (DESY/Zeuthen) and H Abramowicz (TAU)
and the Columbia summer students
C Georgiou, D Greenwald, Y Ning, W Serber, I Spiro

- Frictional cooling
- Simulation and optimization
 - Target and magnet
 - Phase rotation
 - Cooling
- The experimental set-up
Frictional cooling: The idea

Cool μ’s where $\frac{dE}{dx} \propto \beta$

and compensate the energy loss by an E-field: **cooling**

Below the ionization peak dE/dx is dominated by:

- nuclear recoil
- excitation
- charge exchange (muonium) for μ^+ and capture for μ^-

Issues/ consequences/ comments:

- large dE/dx ⇒ work with a gas
- with $\vec{E} \parallel \vec{B}$ we never get below the peak ⇒ apply $\vec{E} \perp \vec{B}$

Work with very low energy muons in Helium at low density.
Frictional cooling: particle trajectory

$B=5$ T, $E=5$ MV/m, $\rho_{He}=1 \times 10^{-4}$ g/cm3

Calculated with continuous energy loss
Frictional cooling: stop the μ

\[R(m) = 1.2 \times 10^{-4} P(\text{MeV}/c)^{3.35} \]

\Rightarrow need low initial muon momenta
Frictional cooling scheme

Proton Beam → Target

Drift Region → B → Phase Rotation Region (Induction Linac)

30-50 m

Optimize: target, phase rotation and cooling channel (in a toroid)
Target system: study II

Longitudinal (StudyII) scheme

Feb 5, 2002 6 IIT/FNAL
Target (study II): MARS scan

Optimize E_p, target A, radius, length

![Graphs showing data analysis for MARS scan with different target materials and energies.](image-url)
- cool μ^+ and μ^- in the same time
- exploit the non-leading behaviour of the low energy π
- calculated a new, symmetric magnet with a gap
Target (transverse): MARS scan

Further GEANT investigation of best configuration

Cu, $E_p = 2$ GeV, target 0.5 or 0.75 cm thick
MARS Cu 2–30m GeV 0.5 cm + GEANT

MARS Cu 2–30m GeV 0.75 cm + GEANT
Phase rotation: scheme

Phase rotation optimization

Length=30m, \(t_1 = 100 \text{ns}, t_2 = 225 \text{ns}, E\text{field}=5 \text{MV/m} \)

Before Phase Rotation

lost muons in Phase Rotation

After Phase Rotation

Feb 5, 2002
Phase rotation: results

$p_z < 100$ MeV

$p_z < 50$ MeV
Include phase rotation inside cooling channel $|p_z| < 50$ MeV
Cooling: realistic simulation

- Electronic energy loss continuous (NIST table)
- Nuclear energy loss (multiple scattering) discrete
- Include Barkas effect and μ^- capture
- Incorporate scattering cross section into the cooling program: $T_\mu > 2$ keV Born approx, else classical $\theta(b)$
 $\rightarrow d\sigma/d\theta \rightarrow$ mean free path
Frictional cooling: particle trajectory

He w density 1.10^{-4} gm/cm3
B = 5T uniform for now
E = 8 MV/m (increased from 5 to avoid μ^- capture)
cooling cell - 42x42x20 cm3
the cells are placed between 1m solenoids, with radius 42 cm
No E field in solenoids

calculated with realistic energy loss

Feb 5, 2002
Frictional cooling: survival probability

Survival Probability in Helium

Survivors

P_z (MeV/c)

P_T (MeV/c)

Probability

Feb 5, 2002 16 IIT/FNAL
Frictional cooling: what did we achieve

First and preliminary result (based on $\approx 80 \mu$'s with $p_{x,y,z} < 50$ MeV)

<table>
<thead>
<tr>
<th></th>
<th>μ^+</th>
<th>μ^-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cooling</td>
<td>drift</td>
</tr>
<tr>
<td>μ/proton</td>
<td>0.005</td>
<td>0.057†</td>
</tr>
<tr>
<td>rms(p_x) (MeV)</td>
<td>0.07</td>
<td>9.4</td>
</tr>
<tr>
<td>rms(p_y) (MeV)</td>
<td>0.08</td>
<td>10.3</td>
</tr>
<tr>
<td>rms(p_z) (MeV)</td>
<td>0.07</td>
<td>53</td>
</tr>
<tr>
<td>rms(tran) (cm2)</td>
<td>40 x 60</td>
<td>25</td>
</tr>
<tr>
<td>rms(long) (cm)</td>
<td>250</td>
<td>1200</td>
</tr>
<tr>
<td>phase space reduction*</td>
<td>6×10^5</td>
<td></td>
</tr>
</tbody>
</table>

† for $T_z < 100$ MeV

* phase space factor for the μ's which are cooled

We continue to work on:

- finalizing MARS and GEANT studies
- the phase rotation optimization
- incorporate fringe fields into cooling
- matching B-fields between target (drift) region, phase rotation and cooling ring
- extraction of μ from the cooling ring, and first re-acceleration
Cooling: RING simulation

- 1m long solenoid
- 0.2m long cooling cell
- 60m ring
Frictional cooling: what did we achieve

First and preliminary RING result
(based on $\approx 10000 \mu$’s with $40 < T_{\text{arrival}} < 200$ ns)

<table>
<thead>
<tr>
<th>After</th>
<th>μ^+ ($t_2 = 225$ns)</th>
<th>μ^- ($t_2 = 275$ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ/proton</td>
<td>cooling</td>
<td>drift</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rms(p_x) (MeV)</td>
<td>0.07</td>
<td>16</td>
</tr>
<tr>
<td>rms(p_y) (MeV)</td>
<td>0.07</td>
<td>16</td>
</tr>
<tr>
<td>rms(p_z) (MeV)</td>
<td>0.09</td>
<td>37</td>
</tr>
<tr>
<td>rms(tran) (cm2)</td>
<td>60x50</td>
<td>50</td>
</tr>
<tr>
<td>rms(long) (cm)</td>
<td>121</td>
<td>387</td>
</tr>
</tbody>
</table>

| phase space reduction* | 1.4×10^6 | 1.3×10^5 |

† for $T_{\mu} < 100$ MeV
* phase space factor for the μ’s which are cooled

We continue to work on:

finalizing MARS and GEANT studies
the phase rotation optimization
incorporate fringe fields into cooling
matching B-fields between target (drift) region, phase rotation and cooling ring
extraction of μ from the cooling ring, and first re-acceleration

Feb 5, 2002 19 IIT/FNAL
Gas Breakdown

Can we apply high E-fields in gas without causing avalanche?

- High Magnetic field will help

- An Electron starting from rest in crossed E & B fields:
 Max. Kinetic Energy $= 2m(e/B)^2$
 For $E = 5$ MV/m, $B = 5$ T $(KE)_{max} = 16$ eV

- A muon from rest in crossed E & B fields:
 For $E = 5$ MV/m, $B = 5$ T $(KE)_{max} = 3.3$ keV

\[E_{ion}(H_2) = 13.6 \text{ eV}, \quad E_{ion}(He) = 24.6 \text{ eV} \]
Experimental Work at Nevis

- We want to measure the energy loss, the capture, test cooling principle
MultiWire Proportional Chamber

- Single Wire prototype constructed, tested with P10
- **Ongoing**: Multiwire, use Xe gas.

Feb. 5, 2002

R. Galea IIT/FNAL
MicroChannelPlate

- MCP used to measure s & e
- Use , , sources in 4 MeV p beam at Nevis & 10-40 KeV beam at PSI

MCP: front side Accelerating grid