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Ring Cooler Geometry

TOSCA finite element program 
models one octant of r ing.
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Approach to Field Calculations

• The smallest geometric symmetry unit is the octant.  This is not the 
smallest magnetic symmetry unit because of the field flips.

• If we can assume that the magnet iron is linear we can separate the 
octant into sub-regions:

– Large Solenoid

– Wedge Dipole

– Small Solenoid

• We can calculate the contributions of these magnets and add them.

– We can evaluate how good an approximation this is.

• The alternative would be to treat the system as a whole.  

– The finite element problem would have ~1000000 nodes and 
would take a very long time to run! 

– This is not a simple topology for programs like TOSCA.
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Dipole Magnet Specifications 

• The preliminary parameters of the bending magnet as 
provided:

– Bending Radius  Rbend =52 cm

– Bending Angle Θbend = 45º

– Field Strength   B = 1.46 T at reference radius 

– Normalized Field Gradient:

• dBy/dx × (R/Bo) = -0.5  

– Radius of aperture Raperture = 17 cm.
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Sketch of Dipole Magnet

Pole face is shaped to 
achieve required gradient

The design of the wedge 
magnet is from P. Schwandt
(dated 30 Jan 01).

It has been revised.
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Saturation in Dipole Magnet

• Figure shows the 
permeability for the 
vertical midplane of the 
magnet.

• µ<10 on inner edge of the 
aperture.
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By along Vertical Symmetry Plane

• Figure shows three curves:

– Ideal Field:

• 2D field from shaped 
iron pole and effective 
yoke width.

• Calculate index=0.473

– 3D Field Calculation

• Calculation using 
TOSCA

• Gives index=0.47

– 2D cylindrical Calculation

• Uses same pole profile, 
but has closed cylinder 
out of plane.
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By Off Vertical Symmetry Plane

By on Different Planes
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Dipole Field along Reference Path

Field Along Reference Path
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Figure 4:  Field components for a path 
displaced 10 cm vertically from the 

reference path

Fields 10 cm Off Axis in Dipole  Magnet
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Avoiding a 3D Map

• The 2D part of a long accelerator magnet is traditionally 
parameterized by Fourier harmonics.

• A generalization of the traverse field that takes into 
account the s dependence of the field has the form:
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Transverse Harmonics as a Function 
of s

Dipole Component
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Dipole Profile Fits

b1 harmonic

Calculation

Fit

Bo Harmonic

Fit to 

tanh[k(x-χ)]-tanh[k(x+χ)]
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Preliminary Results from Fit

From Bphi From Br
Fit results

a lambda z0 a lambda z0

Dipole -7358.6 11.392 22.244 -7643.2 23.329 21.395
0.12909 4.64E-04 3.33E-04 0.1199 3.34E-04 2.81E-04

Quadrupole52.52856.529 7.0725 23.769 48.213 6.45E+00 18.622
8.05E-03 1.97E-03 2.16E-03 8.22E-03 7.06E-04 1.00E-03

Sextupole 1.0784 6.895 21.415 1.1072 7.7163 24.129
6.10E-04 3.85E-03 5.06E-03 5.48E-04 3.35E-03 4.00E-03
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Dipole Field Description

• The harmonic description is currently in Muc_Geant.  

– I have calculated harmonics of Bφ(s) and Br(s) at positions along a 
reference path through the dipole magnet at 7 different radii using the 
TOSCA program.

– I have fit the previous formula (2 transparencies ago) parameterizing K(s) 
as:

• Kn(s) = a[tanh((z-zo)/λ)–tanh((z+zo)/λ)] for each n

• The parameters for K(s) come from a combined fit of Br and Bφ

– The fits for the Dipole and Sextupole components look reasonably good.  
The fit to the Quadrupole component is not that stable.

• Note the difference in the Br and Bφ for zo for the quadrupole fit.

– Since the harmonics are power series r the field at large radius will be less 
reliable.  This can be seen in the field for r>14 cm. 
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Tosca Model for Wedge Dipole

End of Return Iron for Large Solenoid

10 cm gap between dipole and shield
15 cm endplate

95 cm radius

Coils in this Model are 
assumed to be 

superconducting
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Long Solenoid Magnet

coil

Thick Flux 
Retur n  

Vanadium Permadur  
End Plate

Field Clamp
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Fields in Long Solenoid

Solenoid Fields
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Comments on Solenoid Field

• The end plate effectively separates the solenoid field from 
the dipole for the case with small aperture coils.  

– This still has to be shown for the large coil case.

• Radial field are present only in vicinity of end plate.

– Extend approximately one coil diameter (as expected).
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Short Solenoid Magnet
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Short Solenoid Fields

Bz in Field Flip Solenoid
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Ideal Short Solenoid Field Flip Magnet

• Top figure shows Valerie’s 
design for the short field flip 
solenoid.

• The lower figure shows the field 
and dispersion for that magnet.

• This form of the field assumes 
that there is a Neumann condition 
at the end of the magnet.

– The field will continue ~2 T 
forever.

Bz on 
axis
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Short Solenoid Fields From Opera2D

Field with iron 
covering ends

Field with aperture 
for muons

This forces field to be 
sort of parallel to axis

How critical is it to have 
this field plateau?
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Field Maps

• The TOSCA program can generate 3D field grids.
– Wedge Dipole

• Opera2D is used to generated the following grids with 1 cm×1 cm 
segmentation:
– Large Solenoid
– Tail of Dipole in Large Solenoid
– Tail of Dipole in Small Solenoid
– Small Solenoid

• The gufld (or guefld) subroutine in GEANT will have to keep track of 
which octant it is in, which grid it should use and what signs to apply 
to the field for each point in space.
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Field in Geant
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Tracking Muons Around the Ring

• Tracking to test the field.

– Set all absorber material to vacuum.

– Remove all RF.

– Cooling ring now is just a storage ring.

• Current State:

– A so-called on momentum muon can get 2 revolutions around the 
ring.

– This just requires tuning the overall dipole field with a small scale 
factor.

– There is a very small transverse displacement necessary since the 
reference path is not exactly circular because of the fringe field.
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This is the only graph I  could find.  The on momentum track shows very 
little Larmor  motion.
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Current Status

• I am beginning to look at tracking muons through the ring 
with the RF.  I have large losses at this point.  

– This is merely debugging a new system.  I need to put 
more work here.

• I have placed all of the code and field maps for this 
realistic field representation into the MUC_GEANT CVS.

– They are available for others to use.

– There are still some details that need to be fixed.


