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Ring Cooler Geometry
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Figure 11: Schematic of ring cooler
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TOSCA finite element program
models one octant of ring.
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Approach to Field Calculations

 The smallest geometric symmetry unit isthe octant. Thisisnot the
smallest magnetic symmetry unit because of the field flips.

* If we can assume that the magnet iron is linear we can separate the
octant into sub-regions:

— Large Solenoid
— Wedge Dipole
— Small Solenoid
» We can calculate the contributions of these magnets and add them.
— We can evaluate how good an approximation thisis.
e The alternative would be to treat the system as awhole.

— The finite element problem would have ~1000000 nodes and
would take avery long time to run!

— Thisisnot assimple topology for programs like TOSCA.
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Dipole Magnet Specifications

e Thepreliminary parameters of the bending magnet as
provided:

— Bending Radius R, =52 cm
— Bending Angle ®, 4 = 45’
— Held Strength B =1.46 T at reference radius

_ Normalized Eidld Gradient: %é - 05
.+ dB,/dx x (R/B,) = -0.5
— Radius of aperture R,qqe =17 CM.
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Sketch of Dipole Magnet
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Pole faceis shaped to
achieverequired gradient

The design of the wedge

magnet isfrom P. Schwandt
(dated 30 Jan 01).

It has been revised.
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Saturation in Dipole Magnet

* Figure showsthe
permeability for the
vertical midplane of the
magnet.

e <10 oninner edge of the
aperture.
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B, along Vertical Symmetry Plane

* Figure shows three curves:
— |deadl Field:

» 2D field from shaped
Iron pole and effective
yoke width.

e Calculate index=0.473
— 3D Fidld Calculation

« Calculation using
TOSCA

* Givesindex=0.47
— 2D cylindrical Calculation

By, Gauss

By Along Vertical Symmetry Plane
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B, Off Vertical Symmetry Plane

Index Calculated on Difference By on Different Planes
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Dipole Field along Reference Path

Field Along Reference Path Fields 10 cm Off Axis in Dipole Magnet
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Avoiding a 3D Map

e The 2D part of along accelerator magnet is traditionally
parameterized by Fourier harmonics.

* A generalization of the traverse field that takes into
account the s dependence of the field has the form:

3d°K 5 d*K .
B(r,d,s)=| K. (2)-=——r%+ Lr*+...|dn(@) +
(r.9,9) {1() 8 a2 19 o< } (#)
1 d°K 1 d*K .
Kor —— 23 4 2r° +...|9n(20) + - - -
{ 6 ds? 128 ds® } (29)

5 February 2002 Ring Cooler Magnet System Page 10
S.Kahn



Transverse Harmonics as a Function
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Dipole Profile Fits
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Preliminary Results from Fit

From Bphi From Br
Fit results
a lambda  z0 a lambda  z0
Dipole -7358.6 11.392 22.244 -7643.2 23.329 21.395
0.12909 4.64E-04 3.33E-04 0.1199 3.34E-04 2.81E-04
Quadrupol¢  56.529 7.0725 23.769 48.213 6.45E+00 18.622
8.05E-03 1.97E-03 2.16E-03 8.22E-03 7.06E-04 1.00E-03
Sextupole 1.0784 6.895 21.415 1.1072 7.7163 24.129
6.10E-04 3.85E-03 5.06E-03 5.48E-04 3.35E-03 4.00E-03
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Dipole Field Description

* Theharmonic description is currently in Muc_Geant.

| have calculated harmonics of B, (s) and B (s) a positionsalong a
reference path through the dipole magnet at 7 different radii using the
TOSCA program.

| have fit the previous formula (2 transparencies ago) parameterizing K(s)
as.

« K. (s) = dtanh((z-z,)/A)-tanh((z+z,)/N)] for each n

* The parameters for K(s) come from a combined fit of B, and B,

The fits for the Dipole and Sextupole components look reasonably good.
The fit to the Quadrupole component is not that stable.

* Notethedifferencein the B, and B, for z, for the quadrupole fit.

Since the harmonics are power seriesr the field at large radius will be less
reliable. This can be seen in thefield for r>14 cm.
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osca Model for Wedge Dipole

95 cm radius >

o End of Return Iron for Large Solenoid

¢ 15 cm endplate
<«— 10 cm gap between dipole and snield

k1000 = k4oQ

Coilsin thisModel are
assumed to be
superconducting
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Long Solenoid Magnet
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Fields in Long Solenoid

50000
45000
40000
35000

B, gauss

Solenoid Fields

Bz |

\ — — Br 5 cm

\ -- - -Br_lO_cm:

30000 -
25000 +
20000 -
15000 -
10000 -

5000 -

100 200 300 400 500

Axial Position, cm

5 February 2002

Ring Cooler Magnet System
S.Kahn

Page 17



Comments on Solenoid Field

* Theend plate effectively separates the solenoid field from
the dipole for the case with small aperture coils.

— This still has to be shown for the large coil case.
« Radial field are present only in vicinity of end plate.
— Extend approximately one coil diameter (as expected).
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Short Solenoid Magnet
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Short Solenoid Fields
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ldeal Short Solenoid Field Flip Magnet

o Top figure showsValerie's
design for the short field flip
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Figure 3: Al feld wnd dispersion funciions in shor 5%,
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Short Solenoid Fields From Opera2D
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Thisforcesfield to be
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Field Maps

e The TOSCA program can generate 3D field grids.
— Wedge Dipole
e Opera2D isused to generated the following grids with 1 cmx1 cm
segmentation:
— Large Solenoid
— Tail of Dipole in Large Solenoid
— Tail of Dipole in Small Solenoid
— Small Solenoid

* Thegufld (or guefld) subroutine in GEANT will have to keep track of
which octant it isin, which grid it should use and what signs to apply
to the field for each point in space.
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Field in Geant
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Tracking Muons Around the Ring

o Tracking to test the field.
— Set all absorber material to vacuum.
— Removedll RF.
— Cooling ring now is just a storage ring.
e Current State:
— A so-called on momentum muon can get 2 revolutions around the
ring.
— Thisjust requires tuning the overall dipole field with a small scale
factor.

— Thereisavery small transverse displacement necessary since the
reference path is not exactly circular because of the fringe field.
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ARTE RING COOLER-NEW SCHEME FROM BALBEKOV 12/11/01

Thisistheonly graph | could find. The on momentum track showsvery

little L ar mor motion.
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Current Status

e | am beginning to look at tracking muons through the ring
with the RF. | have large losses at this point.

— Thisis merely debugging anew system. | need to put
more work here.

* | have placed all of the code and field maps for this
realistic field representation into the MUC_GEANT CVS.

— They are avallable for othersto use.
— There are still some detalls that need to be fixed.
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