

Perspective on Absorber R&D

MuCool Meeting IIT/Fermilab 2/6/02 (revised)

Absorber-Medium Options

• Cooling rate:

$$\frac{d\varepsilon_{x,N}}{dz} \approx -\frac{1}{\beta^2} \frac{\varepsilon_{x,N}}{E} \left| \frac{dE}{dz} \right| + \beta_{\perp} \frac{(0.014 \text{ GeV})^2}{2\beta^3 E m_{\mu} L_R}$$

Mat'l	ρ	dE/dx	<i>dE/dx</i> /cm	L_R	merit	
	(g/cm^3)	$(MeV/g \cdot cm^2)$	(MeV/cm)	(cm)	$(L_R dE/dx)^{-2}$	
LH ₂	0.0708	4.05	0.29	866	1	
LHe	0.125	1.94	0.24	755	1.95	
LiH	0.82	1.94	1.59	106	2.28	
Li	0.53	1.64	0.88	155	3.54	
CH ₄	0.42	2.42	1.03	46.5	5.15	
Be	1.848	2.95	2.95	65	6.02	

- "merit" ~ rate of increase of (4D) transverse phase-space density
- \Rightarrow Hydrogen is best by factor ≈ 2

FS II Cooling Channel

2.75-m SFOFO ("Lattice 1"):

• Performance simulations based on single set of windows per absorber at ≈1 atm operating pressure:

2.75-m SFOFO lattice: 360 μm Al1.65-m SFOFOlattice: 220 μm Al

Safety Considerations

- Established FNAL LH₂ guidelines:
 - 1. Vacuum vessel enclosing LH₂ flask must contain neither oxygen nor ignition sources
 - 2. Although absorber can operate at ≈ 15 psi, vacuum vessel enclosing LH₂ flask must be rated for 30 psid (to handle pressure rise from evaporating LH₂ in case of flask rupture)
- RF cavity is ignition source!
 - \rightarrow Especially if cells closed by grids rather than windows

(In any case, Be RF windows not rated for 30 psid so wouldn't satisfy guidelines)

⇒ Need vacuum vessel around absorber with additional set of windows that are twice as strong as absorber windows themselves

"2ndary containment"

• These extra windows were not in the FS II simulations!

ICOOL Studies of Absorber Options

- length (m)
- Updated μ/p within 15-cm longitudinal cutoff (Gallardo email 1/29/02):

Case	Buncher start	Final	
FS II	0.04	0.14	
LH2 (Al x 3)	0.04	0.12	
LHe	0.04	0.11	
LiH	0.04	0.11	

⇒ given add'l windows, LHe or LiH only $\approx 10\%$ worse than LH2 (?)

somehow lost factor ≈ 2 w.r.t. theoretical performance?

LHe Issues

• FNAL cryo engineers believe LHe absorber would need to operate above He triple point to avoid boiling

 $\Rightarrow \geq 2.2 \text{ atm}$

 \Rightarrow windows twice as thick

(≈1-atm operation mey be possible but only with internal heat exchange?)

- Absorber cryoplant \approx \$10M in FS II
 - M. Green: refrigerator cost scaling ~ (1/T)^{0.7} ⇒ LHe cost ~ LH₂ cost × ≈2.5
 o not show stopper
 - BUT:
 - Neuffer bunched $\phi R \rightarrow \times 2$ (keeps both signs)
 - Palmer: 4 MW *p* beam more cost effective than more cooling $\rightarrow \times 4$
 - \Rightarrow Power ×10, LHe cryoplant cost ×10^{0.7} ~ \$130M?

Do absorber windows degrade the cooling?

1–2% in cooling rate in 1 coord ⇒ ≈ 2–4% decrease in μ yield, not ×2 (assuming naïvely that all windows are at β_{min})

Effect of B variation

- If 2ndary-containment windows at $\approx \pm 25$ cm, looks like $\beta \approx 2\beta_{\min}$ (dep. on *p*)
 - \rightarrow still hard to understand $\times 2$ degradation in μ yield Gallardo implies
- Points up advantage of LiH: $5.5 \times$ thinner than LH₂ \Rightarrow essentially all at β_{min}

More tricks up our sleeve:

Al alloy name	Composition	Density	Yield strength @300K	Tensile strength @300K	Tensile strength @20K	Rad. Length
	% by weight	(g/cc)	(ksi)	(ksi)	(ksi)	(cm)
6061-T6	1.0Mg 0.6Si 0.3Cu 0.2Cr	2.70	40	45	68	8.86
2090-T81	2.7Cu 2.2Li .12Zr	2.59	74	82	120	9.18

- "Aircraft alloys" (e.g. 2090-T81) ≈80% stronger than 6061-T6
 ⇒ Absorber window thickness might be reduced by ≈ 45%
- 2ndary-containment vacuum vessel can have Be or Ti windows & may only need safety of factor of 2 (*vs.* 4 for LH₂ flasks)
 - For same strength, in rad. lengths, Be is $\approx 5 \times$ thinner than Al & Ti about $2 \times$
 - \Rightarrow In rad. lengths, 2ndary-enclosure windows may be \approx half as thin as absorber window \Rightarrow All windows combined might be thinner in rad. lengths than FS II absorber windows alone
- But 2ndary-containment windows at larger β than absorber windows
 - ⇒ may need to be larger diameter (but how fit?) & therefore thicker & cooling degradation will be worse even for same thickness
- \Rightarrow Need detailed simulation study and more detailed engineering

Conclusions:

- Effort to prototype and beam-test an absorber is teaching us valuable lessons about real-world safety engineering
- LH_2 may still be best material (especially in potential applications with longer absorbers \Rightarrow relatively less window thickness)
- Need to explore stronger window materials
- Need realistic design including 2ndary containment & need to simulate its performance
- Detailed engineering may still find show-stopper, but none so far
- Need to begin to engineer LiH, for emittance exchange if not transverse cooling

Postscript:

• Clearer thinking about cooling-rate calculations:

$$\beta = 48 \text{ cm}, \varepsilon_{x,N} = 9.6 \text{ cm} \Rightarrow \frac{d\varepsilon_{x,N}}{\varepsilon_{x,N}} \approx \begin{cases} 5.74\%/\text{cell} & 35 \text{ cm LH}_2 \text{ (no scattering)} \\ 5.62\%/\text{cell} & 35 \text{ cm LH}_2 \\ 5.55\%/\text{cell} & 35 \text{ cm LH}_2 + 6 \times 360 \text{ } \mu\text{m Al} \\ 5.52\%/\text{cell} & 6.4 \text{ cm LiH} \end{cases}$$
$$\beta = 17 \text{ cm}, \varepsilon_{x,N} = 2.6 \text{ cm} \Rightarrow \frac{d\varepsilon_{x,N}}{\varepsilon_{x,N}} \approx \begin{cases} 3.44\%/\text{cell} & 21 \text{ cm LH}_2 \text{ (no scattering)} \\ 3.35\%/\text{cell} & 21 \text{ cm LH}_2 \\ 3.29\%/\text{cell} & 21 \text{ cm LH}_2 + 6 \times 220 \text{ } \mu\text{m Al} \\ 3.28\%/\text{cell} & 3.8 \text{ cm LiH} \end{cases}$$

 \Rightarrow FS II cooling channel always stays far from equilibrium emittance

\Rightarrow among lowest-Z materials, choice nearly immaterial!

LiH costs only

- o 1% in cooling rate near start of Lattice 1
- o 5% near end of Lattice 2
- ...w.r.t. pure, uncontained LH_2