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Spatial Boris Push

In collab. with P. Stoltz, J. Cary, at Tech-X (& U. Colorado, Boulder)

The spatial Boris scheme exchanges U for pz and t for z

First, we replace the equation

for pz with the equation for U:

Replacing t with z,

the governing

equations of the spatial

Boris scheme are:
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Decomposition (1)

For spatial Boris push, the equations separate into terms that
directly change pz and terms that don’t

– In the temporal Boris scheme, the separation is into one piece
that changes U (E-fields) and one that doesn’t (B-fields)

The terms that directly change pz are Ez, Bx, and By

For simplicity, rewrite:

Muon Collaboration



Decomposition (2)

The Boris scheme integrates vector and matrix terms separately

The Boris scheme says

first push the vector term

one-half step:

Then push the matrix term a full step:

Finally, push the vector

term the final half step:
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This step is implicit
and requires some
more massaging



Explicit Expression
for Boris Push

Step-centered push of matrix term is 2nd-order accurate

Because M is constant,

a step-centered scheme

will be 2nd-order accurate

Solving for w+ gives:

= (I+R) w-,

R
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Integration Cycle
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Leap-frog: push
the positions
one-half step

Leap-frog: push
the positions
one-half step

Boris: push the
vector term the
final half step

Boris: push the
matrix term a

full step

Boris: push the
vector term

one-half step
Evaluate Fields

Start

End



Boris Push Simplifies
Tracking

Spatial motion is calculated a 1/2 step off from momentum/energy
evolution:

• typically, use leap-frog

• in ICOOL, split into two half-steps,
before and after evolution of w.

Fields are only evaluated once, where momentum kick is applied

• compared to 4 field evaluations for RK

• local effect on particle, so almost indep. of coordinates
• track as if no field, then replace ∆z with separation between planes

(now a function of transverse co-ords)

As in RK, assumes small energy loss per step.
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Boris Push is
Space-Symmetric

– except energy loss, scatter, are applied at end of step

Second-order conservation of energy

• also canonical momentum when applicable

• robust for large stepsizes

Errors tend to average out

• in RK scheme, errors will slowly accumulate

Both schemes work well for small phase advances, but Boris push

is simpler to calculate

• especially if field calculations are expensive

• less savings for curvilinear (where even field-free is complicated)
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Boris Push Example

Test limits of accuracy to see differences between RK and Boris.

Pass particle through single 2 m solenoid, with 7 T field.

For 10 cm steps, noticeable discrepancies in angular momentum

(smaller errors:  neglected r3 term in vector potential)

Geometry: start off with r=0, PZ = 200 MeV, PX = 2 MeV

Muon Collaboration

no vector potential at endpoints:
r = 0 symmetry point (B≡0)

+7 T -7 T



Runge-Kutta results
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Angular Momentum
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Boris-RK comparison
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Canonical Angular Momentum (approx)
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Moliere Scatter

Moliere Scatter Basics:

• constructs net scattering cross section out of many statistically
independent scatter events

• Rutherford scatter (with electrons thrown in) parametrized as
N ∆z s(χ) χ dχ =  2 χC

2 χ  dχ q(χ) / χC
2

 χC
2 = 4π N (∆z) e4 Z (Z+1) / (pv)2

q() is screening, 1 for large χ, drops off to 0 at very small χ
• neglects energy loss between scatters, and effect on position

• result is Gaussian with enhanced tail

• total momentum scattering expressed in terms of single parameter:
screening angle χα'

• requires minimum # of scatters (Ω0 > 20)

• large steps, limited by energy loss, cannot use PDG upper limits.
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New Factors to
Consider

relatively large muon mass:

keep mµ/mp corrections

limits angle of scatter off of electrons;  sharp cutoff

also, Bielajew et al., partial wave method -- more accurate way to
treat electron screening, mostly important for high Z

B field:

no effect on angles;  what about emittance growth?

finite step size:

spatial motion as well as change in angle (result of many collisions)
suffices to have step size < β⊥

muons lose more energy for given scatter:

good for cooling

more constraints on step size (cannot be too large)
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from A. Van Ginneken, MC Note 231

Figure 1: Differential cross section for µp scattering for muon momentum of
0.1 GeV/c, as predicted by Eq. 1 (Berestetskii), Eq. 2 (mµ = 0), Eq. 3 (Mott).
Prediction of Eq. 4 for µe scattering is also shown. In all cases an atomic form
factor (Eq. 5) is applied. Berestetskii and Mott predictions differ by about 10%
at the kinematic limit but appear indistinguishable due to the very compressed
ordinate scale.
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Spatial Displacements
due to Scatter

We are simulating the result of many scatter events, at different points
along orbit:

• yields correlated shifts in position

• and spatial diffusion

These spatial effects are currently neglected:  they are modified by
magnetic fields, but this is the only effect of uniform B

• what about rapidly varying B field?

B field reduces diffusion:  B=0 is then “worst” for accuracy

Can put limits on errors from applying only momentum scatter, and
only at end of step.
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Scatter in Magnetic
Field

single scatter event:  no effect

Larmor period certainly much larger than atomic distances

muon unmagnetized as far as single scatter event goes

multiple scatter:  weak effect on angles

uniform BZ field, go in Larmor frame, angles looks like B=0 case

varying field, only affects distribution because scattered particles
see different fields.

For rapidly varying B, may enhance angles by defocussing;

but typically place absorber symmetric about B=0 plane.

Magnetic field can modify shifts in position, but these are currently
neglected anyway.

Path length changes are small (affects energy loss calculation?)
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Large Step Size Errors

Take B=0, neglect ∆P (energy loss)

δPX
2 ≡ PZ

2 θRMS
2 = PZ

2 S ∆z, expected change in PX
2

integrate to get other moments:
δ(xPX) = PX

2 ∆z / PZ + PZ S (∆z)2 / 2

δx2 = 2 x PX
 ∆z / PZ + PX

2 (∆z)2 / PZ
2 + S (∆z)3 / 3

can mimic effect with 2 displacements, one corr. with scatter, one
uncorr.

Extra Emittance:  dominant term is the usual β⊥  PZ
 S ∆z / (2mc)

new terms compete with β⊥ :       order S (∆z)3

− α⊥  ∆z + (1+ α⊥
2) (∆z)2 / (3 β⊥ ) + θRMS

2 (∆z)2 / (12 〈x2〉)
typically, α⊥  < 1, so require ∆z << β⊥
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Large Step Size Errors

Necessary condition for applying scatter at end of step:
∆z << β⊥

same as regular tracking accuracy, small phase advance per step
tracking is 2nd order, here we have linear errors:
• but rel. to emittance growth from scatter;  small, stochastic terms
• usually dominated by fluctuations for small # particles

Usually α⊥  is small, and absorbers placed at minimum β⊥  (α⊥  = 0) --
don’t expect any visible effect even when ∆z ~ β⊥

Muons have high energy loss for given scatter in material:

this makes them a candidate for ionization cooling

so, non-symmetric energy loss will be dominant source of error.
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Boris push has been adapted for spatial tracking

• rapid, requires only one field evaluation per step

• good conservation properties, space-symmetric

Moliere scatter has small corrections for cooling muons

• kinematics:  intermediate mass, limits angle from scatter off
electrons;  also don’t neglect mµ/mp

• care about emittance, not just angles:  spatial displacement

• magnetic fields only affect spatial displacement, already small

• constraints on accuracy resemble tracking errors in vacuum;
here, is linear times small quantity, vs. second order

These effects yield slight underestimate in emittance growth, except
for spatial displacements; small effect, and can be accounted for.

Muon Collaboration
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