Muon Particle Tracking

G. Penn UC Berkeley / LBNL CBP

Tuesday, February 5, 2002 Cooling Theory and Simulations Day IIT

- I. Boris Particle Push
- Spatial Boris Push Equations
- Stability and Accuracy
- Comparison with Runge-Kutta
- II. Molière Scatter
- General Formalism
- Muon Kinematics
- Magnetic Field
- Error Estimates

Spatial Boris Push

In collab. with P. Stoltz, J. Cary, at Tech-X (& U. Colorado, Boulder)

The spatial Boris scheme exchanges U for p_z and t for z

First, we replace the equation for pz with the equation for U:

$$\frac{dp_x}{dt} = q(E_x + v_y B_z - v_z B_y)$$
$$\frac{dp_y}{dt} = q(E_y + v_z B_x - v_x B_z)$$
$$\frac{d(U/c)}{dt} = q(E_x v_x + E_y v_y + E_z v_z)$$

Replacing t with z, the governing equations of the spatial Boris scheme are:

$$\begin{aligned} \frac{dp_x}{dz} &= \frac{1}{v_z} \frac{dp_x}{dt} = q \left(\frac{E_x}{v_z} + \frac{v_y B_z}{v_z} - B_y \right) \\ \frac{dp_y}{dz} &= \frac{1}{v_z} \frac{dp_y}{dt} = q \left(\frac{E_y}{v_z} - \frac{v_x B_z}{v_z} + B_y \right) \\ \frac{dU/c}{dz} &= \frac{1}{v_z} \frac{dU/c}{dt} = q \left(\frac{v_x E_x}{v_z c} + \frac{v_y E_y}{v_z c} + \frac{E_z}{c} \right) \end{aligned}$$

Decomposition (1)

For spatial Boris push, the equations separate into terms that directly change p_z and terms that don't

 In the temporal Boris scheme, the separation is into one piece that changes U (E-fields) and one that doesn't (B-fields)

The terms that directly change p_z are E_z , B_x , and B_y

$$\frac{d}{dz} \begin{pmatrix} p_x \\ p_y \\ U/c \end{pmatrix} = \frac{q}{p_z} \begin{pmatrix} 0 & B_z & E_x/c \\ -B_z & 0 & E_y/c \\ E_x/c & E_y/c & 0 \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ U/c \end{pmatrix} + q \begin{pmatrix} -B_y \\ B_x \\ E_z/c \end{pmatrix}$$

7

For simplicity, rewrite:

$$\frac{dw}{dz} = Mw + b$$

Decomposition (2)

The Boris scheme integrates vector and matrix terms separately

The Boris scheme says first push the vector term one-half step:

$$w^- = w^n + \frac{\Delta z}{2}b$$

This step is implicit and requires some more massaging

Then push the matrix term a full step:

$$w^{+} - w^{-} = M\left(\frac{w^{+} + w^{-}}{2}\right)^{*} \Delta z$$

Finally, push the vector term the final half step:

$$w^{n+1} = w^+ + \frac{\Delta z}{2}b$$

Explicit Expression for Boris Push

Step-centered push of matrix term is 2nd-order accurate

Because M is constant,
a step-centered scheme
$$w^+ - w^- = M\left(\frac{w^+ + w^-}{2}\right)\Delta z$$

will be 2nd-order accurate

Solving for w^+ gives

Solving for
$$w^{+}$$
 gives: $w^{+} = \left(I - M\frac{\Delta z}{2}\right)^{-1} \left(I + M\frac{\Delta z}{2}\right) w^{-}$
 $= (I+R) w^{-},$
 $R = \frac{q\Delta z/p_{z}}{1 + \frac{q^{2}\Delta z^{2}}{4p_{z}^{2}} \left(B_{z}^{2} - \frac{E_{x}^{2} + E_{y}^{2}}{c^{2}}\right)} \begin{pmatrix} \frac{q\Delta z}{2p_{z}} \left(\frac{E_{x}^{2}}{c^{2}} - B_{z}^{2}\right) & B_{z} + \frac{q\Delta z}{2p_{z}} \frac{E_{x}E_{y}}{c^{2}} & \frac{E_{x}}{c} + \frac{q\Delta z}{2p_{z}} \frac{B_{z}E_{y}}{c} \\ -B_{z} + \frac{q\Delta z}{2p_{z}} \frac{E_{x}E_{y}}{c^{2}} & \frac{q\Delta z}{2p_{z}} \left(\frac{E_{y}^{2}}{c^{2}} - B_{z}^{2}\right) & \frac{E_{y}}{c} - \frac{q\Delta z}{2p_{z}} \frac{B_{z}E_{x}}{c} \\ \frac{E_{x}}{c} + \frac{q\Delta z}{2p_{z}} \frac{B_{z}E_{y}}{c} & \frac{E_{y}}{c} + \frac{q\Delta z}{2p_{z}} \frac{B_{z}E_{x}}{c} & \frac{q\Delta z}{2p_{z}} \left(\frac{E_{x}^{2}}{c^{2}} + \frac{E_{y}^{2}}{c^{2}}\right) \end{pmatrix}$

Boris Push Simplifies Tracking

Spatial motion is calculated a 1/2 step off from momentum/energy evolution:

- typically, use leap-frog
- in ICOOL, split into two half-steps, before and after evolution of *w*.

Fields are only evaluated once, where momentum kick is applied

- compared to 4 field evaluations for RK
- local effect on particle, so almost indep. of coordinates
- track as if no field, then replace Δz with separation between planes (now a function of transverse co-ords)

As in RK, assumes small energy loss per step.

Boris Push is Space-Symmetric

- except energy loss, scatter, are applied at end of step

Second-order conservation of energy

- also canonical momentum when applicable
- robust for large stepsizes

Errors tend to average out

• in RK scheme, errors will slowly accumulate

Both schemes work well for small phase advances, but Boris push is simpler to calculate

- especially if field calculations are expensive
- less savings for curvilinear (where even field-free is complicated)

from P. Stoltz et al., MC Note 229

momentum to better than 0.02%, more than two orders of magnitude better than the Runge-Kutta. using a Runge-Kutta integration scheme. The dashed line is from a simulation using the modified as a function of distance along a uniform solenoid channel. The solid line is from a simulation Boris integration scheme. The simulation using the modified Boris scheme conserved perpendicular FIG. 1. The perpendicular momentum $(p_{perp} = \sqrt{p_x^2 + p_y^2})$, normalized to its initial value,

Test limits of accuracy to see differences between RK and Boris.

Pass particle through single 2 m solenoid, with 7 T field. For 10 cm steps, noticeable discrepancies in angular momentum (smaller errors: neglected r³ term in vector potential)

Geometry: start off with r=0, $P_Z = 200 \text{ MeV}$, $P_X = 2 \text{ MeV}$ no vector potential at endpoints: r = 0 symmetry point (B=0) +7 T -7 T

Canonical Angular Momentum (approx)

Z (m)

Moliere Scatter

Moliere Scatter Basics:

- constructs net scattering cross section out of many statistically independent scatter events
- Rutherford scatter (with electrons thrown in) parametrized as
 N Δz s(χ) χ dχ = 2 χ_C² χ dχ q(χ) / χ_C²
 χ_C² = 4π N (Δz) e⁴ Z (Z+1) / (pv)²
 q() is screening, 1 for large χ, drops off to 0 at very small χ
- neglects energy loss between scatters, and effect on position
- result is Gaussian with enhanced tail
- total momentum scattering expressed in terms of single parameter: screening angle χ_{α}'
- requires minimum # of scatters ($\Omega_0 > 20$)
- large steps, limited by energy loss, cannot use PDG upper limits.

New Factors to Consider

relatively large muon mass:

keep m_{μ}/m_p corrections

limits angle of scatter off of electrons; sharp cutoff

also, Bielajew et al., partial wave method -- more accurate way to treat electron screening, mostly important for high Z

B field:

no effect on angles; what about emittance growth?

finite step size:

spatial motion as well as change in angle (result of many collisions) suffices to have step size $< \beta_{\perp}$

muons lose more energy for given scatter:

good for cooling

more constraints on step size (cannot be too large)

from A. Van Ginneken, MC Note 231

Figure 1: Differential cross section for μp scattering for muon momentum of $0.1 \, GeV/c$, as predicted by Eq. 1 (Berestetskii), Eq. 2 ($m_{\mu} = 0$), Eq. 3 (Mott). Prediction of Eq. 4 for μe scattering is also shown. In all cases an atomic form factor (Eq. 5) is applied. Berestetskii and Mott predictions differ by about 10% at the kinematic limit but appear indistinguishable due to the very compressed ordinate scale.

Spatial Displacements due to Scatter

We are simulating the result of many scatter events, at different points along orbit:

- yields correlated shifts in position
- and spatial diffusion

These spatial effects are currently neglected: they are modified by magnetic fields, but this is the only effect of uniform B

• what about rapidly varying B field?

B field reduces diffusion: B=0 is then "worst" for accuracyCan put limits on errors from applying only momentum scatter, and only at end of step.

Scatter in Magnetic Field

single scatter event: no effect

Larmor period certainly much larger than atomic distances muon unmagnetized as far as single scatter event goes

multiple scatter: weak effect on angles

uniform B_Z field, go in Larmor frame, angles looks like B=0 case varying field, only affects distribution because scattered particles see different fields.

For rapidly varying B, may enhance angles by defocussing; but typically place absorber symmetric about B=0 plane.

Magnetic field can modify shifts in position, but these are currently neglected anyway.

Path length changes are small (affects energy loss calculation?)

Take B=0, neglect ΔP (energy loss)

 $\delta P_X^2 \equiv P_Z^2 \theta_{RMS}^2 = P_Z^2 S \Delta z, \text{ expected change in } P_X^2$ integrate to get other moments: $\delta(xP_X) = P_X^2 \Delta z / P_Z + P_Z S (\Delta z)^2 / 2$ $\delta x^2 = 2 x P_X \Delta z / P_Z + P_X^2 (\Delta z)^2 / P_Z^2 + S (\Delta z)^3 / 3$ can mimic effect with 2 displacements, one corr. with scatter, one uncorr.

Extra Emittance: dominant term is the usual $\beta_{\perp} P_Z S \Delta z / (2mc)$ new terms compete with β_{\perp} : order $S (\Delta z)^3$ $-\alpha_{\perp} \Delta z + (1 + \alpha_{\perp}^2) (\Delta z)^2 / (3 \beta_{\perp}) + \theta_{RMS}^2 (\Delta z)^2 / (12 \langle x^2 \rangle)$

Necessary condition for applying scatter at end of step: $\Delta z \ll \beta_{\perp}$

same as regular tracking accuracy, small phase advance per step tracking is 2nd order, here we have linear errors:

- but rel. to emittance growth from scatter; small, stochastic terms
- usually dominated by fluctuations for small # particles

Usually α_{\perp} is small, and absorbers placed at minimum β_{\perp} ($\alpha_{\perp} = 0$) -- don't expect any visible effect even when $\Delta z \sim \beta_{\perp}$

Muons have high energy loss for given scatter in material: this makes them a candidate for ionization cooling so, non-symmetric energy loss will be dominant source of error.

Summary

Boris push has been adapted for spatial tracking

- rapid, requires only one field evaluation per step
- good conservation properties, space-symmetric

Moliere scatter has small corrections for cooling muons

- kinematics: intermediate mass, limits angle from scatter off electrons; also don't neglect m_{μ}/m_{p}
- care about emittance, not just angles: spatial displacement
- magnetic fields only affect spatial displacement, already small
- constraints on accuracy resemble tracking errors in vacuum; here, is linear times small quantity, vs. second order

These effects yield slight underestimate in emittance growth, except for spatial displacements; small effect, and can be accounted for.

- P. H. Stoltz, G. Penn, J. Wurtele, and J. R. Cary, MC Note 229.
- J. Boris, Proc. of the 4th Conf. on Numerical Simulation of Plasma (NRL, 1970).
- A. Dullweber, B. Leimkuhler, and R. McLachlan, J. Chem. Phys. 15 (1997) 5840.

Moliere scatter:

- A. Van Ginneken, MC Note 231.
- A. V. Tollestrup and J. Monroe, MC Note 176.
- H. A. Bethe, Phys. Rev. 89 (1953) 1256.
- R. Fernow, MC Notes 123 & 124.
- A. F. Bielajew, R. Wang, S. Duane, Nucl. Instr. & Methods **B 82** (1993) 503-512. Particle Data Group, European Physical Journal **C3** (1998) 1.
- G. Shen, C. Ankenbrandt, M. Atac, et al., Phys. Rev. D 20 (1979) 1584.
- P. Lebrun, MC Note 30.