Homework 2

Chapters 4 and 5
4.2) \(Z_s = 600 \Omega \) source
\(Z_L = 8 \Omega \) load
Maximum power is transferred when \(Z_s = Z_L \).
Hence, the secondary of the transformer is \(Z_L \).
So:
\[
\frac{Z_L}{Z_s} = \frac{Z_{\text{second}}}{Z_{\text{primary}}} = \left(\frac{N_{\text{second}}}{N_{\text{primary}}} \right)^2 = \left(\frac{N_L}{N_s} \right)^2
\]
or
\[
N_L/N_s = \left(\frac{Z_L}{Z_s} \right)^{1/2} = \left(\frac{8 \Omega}{600 \Omega} \right)^{1/2} = 0.115
\]
Finally, the transformer must have:
\(N_{\text{second}} = 0.115 N_{\text{primary}} \)

4.13) From the previous problem:
\(C_{\text{cable}} = 30 \times 10^{-6} \text{ F/m} \)
\(L_{\text{cable}} = 0.169 \times 10^{-6} \text{ H/m} \)

Hence, the cable's impedance is:
\[
Z_{\text{cable}} = \sqrt{L_C} = 175 \Omega
\]

Since pulse generator has 75 \(\Omega \) output impedance, the interface between the pulse generator and the cable will have no reflections. The only reflections will occur at the cable-detector interface. At this interface, the reflected amplitude coefficient is:
\[
A_R = \frac{Z_{\text{detected}} - Z_{\text{cable}}}{Z_{\text{detected}} + Z_{\text{cable}}}
\]
\[
= \frac{1 \Omega - 75 \Omega}{1 \Omega + 75 \Omega} = 0.96
\]
This means 94% of the signal is transmitted. The reflected portion is absorbed by the pulse generator, so no further reflections
5.1)

Note large capacitors (electrolytic) which set ripple voltage. The ±12V supplies will also require a low pass filter. The ±5V supply can simply use a voltage regulator.

On the output side of the transformer, the power output is:
\[P = IV = (12V)(0.5A) + (5V)(0.25A) + (12V)(0.1A) \]
\[= 6W + 1.25W + 1.2W \]
\[= 8.45W \]

Considering that 0.85A is drawn on the secondary side of the transformer, a 1A transformer should prove sufficient.

5.2)

C1 is large and chosen to set initial ripple. If \(R = R_e \), then \(R \) and \(R_e \) form a voltage divider; since \(V_0 = 15V \), \(V_0 \cdot C_0 = 30V \). If we desire to have \(C_1 \) create a 1% ripple: \(C_1 = \frac{1}{0.01} \)

where \(dV = 0.01 \cdot 30V = 0.3V \)
\[I = 0.1A \]
\[V = R \cdot 60Hz \cdot 120Hz \] for full wave rectifier
Then: \[C_1 = \frac{0.1 A}{0.3 V \cdot 120 \mu s} = 2800 \mu F \]

R and C form a low-pass filter. The 0.3V ripple from C1 needs to be reduced to 0.0015V, or by a factor of 200. One requires the RC time constant of the filter to be \(> 200 \) longer than the frequency of the rectified signal:

\[\tau = 200RC \geq \frac{1}{120Hz} \]

Since:

\[R = R_C = \frac{V}{I} = \frac{15V}{15mA} = 150 \Omega \]

So:

\[C_e = \frac{1}{(200)(120Hz)(150\Omega)} = 0.25 \times 10^{-6} F = 0.25 \mu F \]