Mailing Address: | Physics Department |
3101 South Dearborn St. | |
Chicago, IL 60616 | |
Office Address: | Tech South, room 1A8-1 |
3424 S. State St. | |
Chicago, IL 60616 | |
Phone: | 312.567.3389 |
Fax: | 312.567.3494 |
eMail: | kaplan-at-iit.edu |
Other URL: | My "official" web page |
Some background documents (more are on the workshop Indico page):
In 1998 I assembled a manual on Physics Demonstrations in Mechanics available in the IIT Physics Dept.
Selected research from my group at IIT on the Muon Ionization Cooling Experiment, the national Muon Accelerator Program, the Fermilab NOvA neutrino experiment, and NASA space-telescope R&D:
See also complete list of my papers with the NOvA collaboration.
At NuFact 2021 held online and in Cagliari, Italy, I presented an invited talk on
At COOL'19 in Novosibirsk, Russia, I presented an invited talk on
At CAARI 2018 in Grapevine, TX, I presented an invited talk on
At CIPANP 2018 in Indian Wells, CA, I presented a poster on
At COOL'15 at Jefferson Laboratory I presented the invited talk
At ICNFP2014 in Crete, Greece, I presented the invited talk
as well as a poster on Measuring Antimatter Gravity with Muonium (see below).
With a small group, I'm now investigating the feasibility of a novel measurement of antimatter gravity!
Does antimatter fall up??? This "science fiction" idea is being taken seriously by a number of researchers.
You may have heard about antimatter as the fuel for the Starship Enterprise, or as the weapon of mass destruction in Angels and Demons. Although rare in nature, antimatter is real, and is studied at particle accelerator laboratories around the world and used everyday in positron-emission tomography (PET) scans at hospitals.
Einstein's General Theory of Relativity, the accepted theory of gravity, predicts no difference between the gravitational behavior of antimatter and that of matter. While well established experimentally, General Relativity is fundamentally incompatible with quantum mechanics, and finding a quantum alternative has been a longstanding quest of physics.
Since all available experimental evidence on which to base a quantum theory of gravity concerns matter-matter or matter-light interactions, matter-antimatter measurements could play a key role in this quest. Indeed, the most general candidate theories include the possibility that the force between matter and antimatter will be different — perhaps even of opposite sign! — from that of matter on matter.
So if antimatter falls up in the gravitational field of the Earth — or even if it falls down, but at a different rate from matter — it will be a really big deal!
But so far no experiment has been sensitive enough to make this very difficult measurement. The first problem is to _make_ some neutral antimatter. This can only be done in tiny quantities. The second is to build a sensitive enough device to detect the tiny effect of gravity on a single atom. Four teams of physicists at the CERN laboratory, in Geneva, Switzerland (where the Higgs boson was discovered) are all competing to make the first measurement using antihydrogen.
I'm leading a group of IIT physicists looking into a new and different approach: make a beam of unstable "muonium" atoms (perhaps at Fermilab, in Batavia, 40 miles west of IIT, or at the Paul Scherrer Institute in Switzerland), and put it through a precision interferometer to measure its trajectory with picometer precision. We don't know yet whether this is just hard, or impossible, but we're keen to work through the details and find out.
For more, see our recent papers, my physics colloquium, and poster presented at CPT'16.