Design of Gridded-Tube Structures for the 201.25 MHz RF Cavity

Department of Mechanical, Materials, and Aerospace Engineering

M. Gosz and M. Sharo
Design considerations

- Design variables:
 - Tube outer diameter, wall thickness
 - Geometrical configuration:
 - Grid spacing between tubes
 - Gap between tubes
 - Type of coolant flowing inside the tubes and flow rate

- Design objective:
 - Select design variables to keep stresses/out-of-plane deflection within the acceptable limits
Heat transfer considerations

Heating of aluminum tubes due to RF radiation.
Forced convection due to coolant passing through the tubes.
Thermal stress analysis

- Structural finite element model
 - Beam elements to model the tubes
 - Shell elements to model the ring structure

- Mechanical properties and dimensions:

<table>
<thead>
<tr>
<th>E (GPa)</th>
<th>v</th>
<th>$\alpha \times 10^{-6}$</th>
<th>$\frac{\text{in}}{\text{in}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>0.33</td>
<td>24</td>
<td>0.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ro (in)</th>
<th>t (in)</th>
<th>D (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.001</td>
<td>16.55</td>
</tr>
</tbody>
</table>
Gridded-tube structure subjected to uniform temperature increase

- ABAQUS
- Thermal buckling occurs at a temperature rise of 69 K
Present focus

Complete heat transfer analysis (collaboration with R. Rimmer)

Perform thermal stress analysis

Selection of design variables